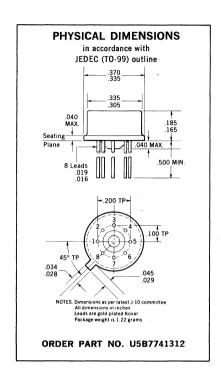
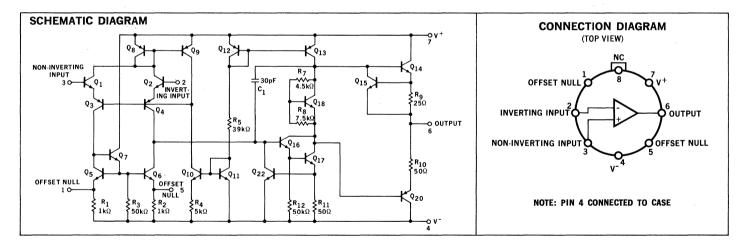
HIGH PERFORMANCE OPERATIONAL AMPLIFIER


FAIRCHILD LINEAR INTEGRATED CIRCUITS


- NO FREQUENCY COMPENSATION REQUIRED
- SHORT-CIRCUIT PROTECTION
- OFFSET VOLTAGE NULL CAPABILITY
- LARGE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
- LOW POWER CONSUMPTION
- NO LATCH UP

GENERAL DESCRIPTION — The μ A741 is a high performance monolithic operational amplifier constructed on a single silicon chip, using the Fairchild Planar* epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of "latch-up" tendencies make the μ A741 ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in integrator, summing amplifier, and general feedback applications. The μ A741 is short-circuit protected, has the same pin configuration as the popular μ A709 operational amplifier, but requires no external components for frequency compensation. The internal 6dB/octave roll-off insures stability in closed loop applications.

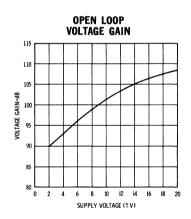
ABSOLUTE MAXIMUM RATINGS

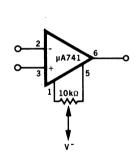
Supply Voltage $\pm 22 V$ Internal Power Dissipation (Note 1) 500 mW Differential Input Voltage ±30 V Input Voltage (Note 2) $\pm 15 \, \mathrm{V}$ -65°C to +150°C Storage Temperature Range Operating Temperature Range -55°C to +125°C Lead Temperature (Soldering, 60 sec) 300°C Output Short-Circuit Duration (Note 3) Indefinite

NOTES:

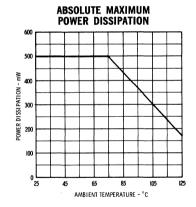
- (1) Rating applies for case temperatures to $125\,^{\circ}$ C; derate linearly at $6.5\,$ mW/ $^{\circ}$ C for ambient temperatures above $+75\,^{\circ}$ C.
- (2) For supply voltages less than $\pm 15\,\mathrm{V}$, the absolute maximum input voltage is equal to the supply voltage.
- (3) Short circuit may be to ground or either supply. Rating applies to +125 °C case temperature or +75 °C ambient temperature.

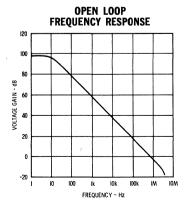
*Planar is a patented Fairchild process.

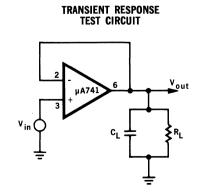


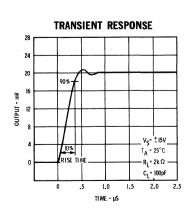

313 FAIRCHILD DRIVE, MOUNTAIN VIEW, CALIFORNIA, (415) 962-5011, TWX: 910-379-6435

FAIRCHILD LINEAR INTEGRATED CIRCUITS μ A741


ELECTRICAL CHARACTERISTICS (V_S = ± 15 V, T_A = 25° C unless otherwise specified)

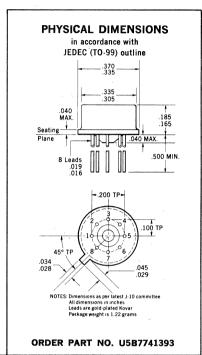

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage	${\sf R_S} \leq 10~{\sf k}\Omega$		1.0	5.0	mV
Input Offset Current			30	200	n A
Input Bias Current			200	500	nA
Input Resistance		0.3	1.0		·MΩ
Large-Signal Voltage Gain	$R_L \geq 2 k \Omega$, $V_{out} = \pm 10 V$	50,000	200,000		
Output Voltage Swing	$ extsf{R}_{ extsf{L}} \geq 10 \ extsf{k}\Omega$	±12	±14		V
	$R_{_{1}} \geq 2 k\Omega$	±10	±13		V
Input Voltage Range	-	±12	±13		V
Common Mode Rejection Ratio	$R_{ m S} \leq 10~{ m k}\Omega$	70	90		dB
Supply Voltage Rejection Ratio	$R_{s} \leq 10 \; k\Omega$		30	150	$\mu V/V$
Power Consumption	·	>	50	85	mW
Transient Response (unity gain)	$V_{in} = 20 \text{ mV}, R_i = 2 \text{ k}\Omega,$				
	$C_1 \leq 100 \text{ pF}$				
Risetime	-		0.3		μs
Overshoot			5.0		%
Slew Rate (unity gain)	$ extsf{R}_{ extsf{L}} \geq 2 extsf{k}\Omega$		0.5		V/μs
The following specifications apply for -5	$5^{\circ}\text{C} \leq \text{T}_{A} \leq +125^{\circ}\text{C}$:				
Input Offset Voltage	R $_{ extsf{S}} \leq$ 10 k Ω			6.0	mV
Input Offset Current	•			500	nA
Input Bias Current				1.5	μ A
Large-Signal Voltage Gain	$R_{_{1}} \geq 2 k \Omega$, $V_{_{ m out}} = \pm 10 V$	25,000			
Output Voltage Swing	$R_L \geq 2 k\Omega$	±10			V

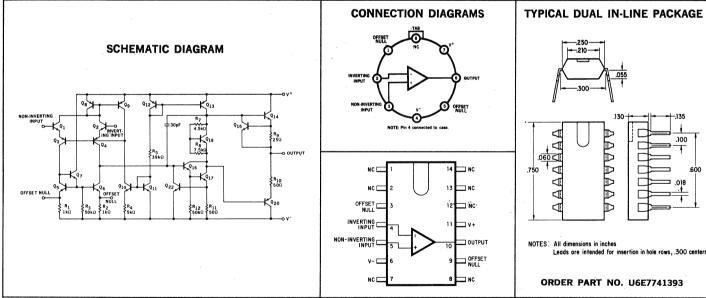




VOLTAGE OFFSET NULL CIRCUIT

HIGH PERFORMANCE OPERATIONAL AMPLIFIER


FAIRCHILD LINEAR INTEGRATED CIRCUITS


- NO FREQUENCY COMPENSATION REQUIRED
- SHORT-CIRCUIT PROTECTION
- OFFSET VOLTAGE NULL CAPABILITY
- LARGE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
- LOW POWER CONSUMPTION
- NO LATCH UP

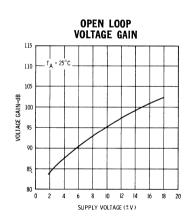
GENERAL DESCRIPTION — The μ A741C is a high performance monolithic operational amplifier constructed on a single silicon chip, using the Fairchild Planar* epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of "latch-up" tendencies make the μ A741C ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in integrator, summing amplifier, and general feedback applications. The $\mu A741C$ is short-circuit protected, has the same pin configuration as the popular µA709 operational amplifier, but requires no external components for frequency compensation. The internal 6dB/octave roll-off insures stability in closed loop applications. For full temperature range operation (-55° C to $+125^{\circ}$ C) see μ A741 data sheet.

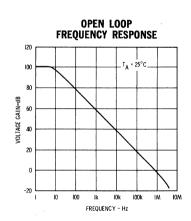
ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18 V
Internal Power Dissipation	500 mW
Differential Input Voltage	±30 V
Input Voltage (Note 1)	±15 V
Storage Temperature Range TO-99	-65°C to +150°C
Dual-In-Line	-55°C to +125°C
Operating Temperature Range	0°C to +70°C
Lead Temperature (Soldering, 60 sec) TO-99	300°C
(Soldering, 10 sec) Dual-In-Line	260°C
Output Short-Circuit Duration (Note 2)	Indefinite

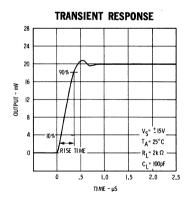
- (1) For supply voltages less than \pm 15 V, the absolute maximum input voltage is equal to the supply voltage.
- (2) Short circuit may be to ground or either supply.

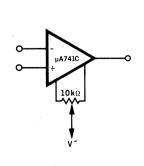
*Planar is a patented Fairchild process.

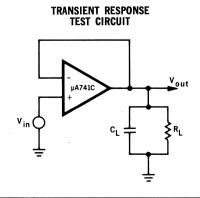

.100



FAIRCHILD LINEAR INTEGRATED CIRCUITS μ A741C


ELECTRICAL CHARACTERISTICS ($V_S = \pm 15 \text{ V}, T_A = 25 ^{\circ}\text{C}$ unless otherwise specified)


PARAMETER	CONDITIONS	MIŅ.	TYP.	MAX.	UNITS
Input Offset Voltage	$R_{S} \leq 10 \ k\Omega$		2.0	6.0	mV
Input Offset Current			30	200	nA
Input Bias Current			200	500	nA
Input Resistance		0.3	1.0		$M\Omega$
Large-Signal Voltage Gain	$R_L \geq 2 k\Omega$, $V_{out} = \pm 10 V$	20,000	100,000		
Output Voltage Swing	$ m R_L \geq 10~k\Omega$	±12	±14		٧
	$R_L \geq 2 \ k\Omega$	±10	±13		٧
Input Voltage Range		±12	±13		٧
Common Mode Rejection Ratio	$R_{S} \leq 10 \ \mathrm{k}\Omega$	70	90		dB
Supply Voltage Rejection Ratio	$R_{S} \leq 10~\mathrm{k}\Omega$		30	150	$\mu V/V$
Power Consumption			50	85	mW
Transient Response (unity gain)	${ m V_{in}}=20$ mV, ${ m R_{L}}=2$ k Ω				
	${ m C_L} \leq 100~{ m pF}$				
Risetime			0.3		μs
Overshoot			5.0		%
Slew Rate (unity gain)	${ m R_L} \geq 2~{ m k}\Omega$		0.5		V/μs
e following specifications apply for 0°0	$\mathtt{C} \leq \mathtt{T}_{A} \leq +70 \mathtt{^{\circ}C}$:				
Input Offset Voltage	$R_{S} \leq 10~\mathrm{k}\Omega$			7.5	mV
Input Offset Current				300	nA ·
Input Bias Current				800	nA
Large-Signal Voltage Gain	$ m R_L \geq 2~k\Omega,~V_{out} = \pm 10~V$	15,000			
Output Voltage Swing	$ m R_L \geq 2~k\Omega$	±10			V



TYPICAL PERFORMANCE CURVES

VOLTAGE OFFSET NULL CIRCUIT

